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Dissipation of energy and of information in nonequilibrium reaction-diffusion systems
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In this paper, we prove a general inequality for the macroscopic relaxation towards a stationary nonequilib-
rium state. Namely, the rate of dissipation of energy in the system always exceeds the rate of dissipation of
information ~up to temperature!. Here the information function is defined as the logarithm of the stationary
probability distribution divided by the volume. The equality is achieved if and only if the stationary probability
distribution is an equilibrium distribution function. This implies a lower bound for the work needed to produce
a fluctuation away from the stationary state, which should have experimental consequences.
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I. INTRODUCTION

Many natural systems are not in equilibrium althou
they reach a stationary state. One of the main problem
out-of-equilibrium thermodynamics is to define nonequil
rium state functions and to find relations between them
well as evolution laws, in particular far from equilibrium
This problem has been addressed by many authors~see, e.g.,
@1–10#!. We derive a general inequality, which holds for a
reaction-diffusion system, between the rate of dissipation
energy and the rate of dissipation of information~in a sense
to be defined later!, during the relaxation of the system from
a nonstationary state to a~nonequilibrium! stationary state.

It is well known ~see@1#! that for a system in an equilib
rium state, the work necessary to produce a fluctuation a
from this macroscopic equilibrium state is larger than
variation of the free energy of the system. Our main res
concerns the work per unit time given to the system, dur
the macroscopic spontaneous relaxation towards a statio
state. More precisely, we consider a reaction-diffusion s
tem, maintained at a fixed temperature by a heat bath.
tain species are also maintained at fixed concentrations
the action of external reservoirs, while other species evo
spontaneously under the chemical and diffusion proce
that take place inside the system. Starting from a mac
scopic state, one can also define the work given to the sys
by the external reservoirs of fixed species during the spo
neous relaxation towards the stationary state~which is, in
general, nonequilibrium!. We prove that, during the sponta
neous evolution, the rate per unit time of this is always lar
than the rate of variation ofF1kBT ln10 P, whereF is the
~nonequilibrium! free energy andP is the stationary distribu-
tion probability, with equality if and only if the system
evolves toward a thermal equilibrium state.

We notice that this kind of inequality cannot be obtain
by the classical principles of thermodynamics alone, or e
of those of generalized thermodynamics. Moreover, an
equality concerning the variation of entropy was derived
@11#, but this does not relate obviously to the variation
free energy and the external work.
PRE 581063-651X/98/58~5!/5351~4!/$15.00
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II. REACTION DIFFUSION SYSTEMS

We consider a system at a fixed temperatureT, with
chemical species denoted byXi , i 51,...,s, and other chemi-
cal species denoted byAl , l 51,...,r , which will be kept
constant by reservoirs later on. The volume of the system
V, supposed to be large, and we denote byxi and al the
respective concentrations of the speciesXi and Al ~number
of particles divided byV). The internal evolution of the sys
tem is described byp processes, denoteda51,...,p, of the
type

(
i 51

s

n1a
i Xi1(

l 51

t

n1a
l Al�(

l 51

s

n2a
i Xi1(

l 51

r

n2a
l Al . ~1!

This type of process describes chemical reactions, as
as diffusion, if the total volumeV is divided in cells and the
Xi or Al denote a species in a given cell. The numbersn6a

i ,
n6a

l are positive or zero integers.
We assume that the system can be described by a

equilibrium free energyF(x,a) ~per unit volume!. For a sys-
tem that is in partial equilibrium,F(x,a) would be the sum
of the equilibrium free energies of each species at their
spective concentration, but we do not restrict ourselves
this special form. The chemical potentials are

m i5
]F

]xi
, ml5

]F

]al
.

The rate constantsva
6 of the backwards and forward pro

cessesa are given by

va
65Ca expF 1

kBT S (
i

n6a
i m i1(

l
n6a

l ml D G, ~2!

where Ca depends only ona @14#. This assures that eac
process is equilibrated at thermal equilibrium. It is eas
seen that this formula applies to the usual kinetic laws wh
the chemical potentials are given by their classical expr
5351 © 1998 The American Physical Society
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sion for ideal mixtures and perfect gases. It has been sh
that it also holds in more general conditions@13#. If we de-
fine

ta
i 5n2a

i 2n1a
i , ta

l 5n2a
l 2n1a

l ,

the free evolution equations~when concentrationsxi andal
are unconstrained! are

dxi

dt
5(

a
ta

i ~va
12va

2!,
dal

dt
5( ta

l ~va
12va

2!. ~3!

If we denote byja(t) the progress variable up to timet of
the processa, i.e., the number of forward eventsa minus the
number of backward eventsa up to time t ~divided by V),
we have

xi~ t !5xi~0!1(
a

ta
i ja~ t !, ~4a!

al~ t !5al~0!1(
a

ta
l ja~ t !, ~4b!

and for given „x(0),a(0)… the system evolves towards
thermal equilibrium where each processa is equilibrated be-
cause of the choice of the rates in Eq.~2!.

III. NONEQUILIBRIUM SITUATION: A
THERMODYNAMIC INEQUALITY

We now assume that external reservoirs control the c
centration of the speciesAl , and, to simplify matters, we
assume that the external reservoirs maintain the conce
tion al at fixed values. Under this condition, the state sp
breaks up in invariant subspacesE„x(0)… given by the linear
equations

xi5xi~0!1(
a

ta
i ja.

Because by Eq.~4a!, the evolution is confined to such
space. If at time 0,xi(0) is given, Eq.~4a! gives the value of
the stochastic processxi(t) at any time. The macroscopi
evolution is given by

dxi

dt
5( ta

i ~va
12va

2!,
dal

dt
50. ~5!

We will show that it is possible to define a state functi
2kBF, which is the analog of Einstein entropy per unit vo
ume, usually defined for equilibrium distributions~see Sec.
IV !. This quantity is obtained from the stationary distributi
of the stochastic theory. Before studying it in the next s
tion, we now state our main result, which is an inequali
holding out of equilibrium, betweendF/dt, dF/dt, andw,
the work done per unit time by the external reservoirs
order to maintain the concentrations of the speciesAl at the
constant valueal .

This thermodynamic inequality can be written as

2S dF

dt
2wD>2kBT

dF

dt
. ~6!
n

n-

ra-
e

-
,

Moreover, dF/dt and dF/dt2w are always negative
and Eq.~6! is an equality if and only if the fixed concentra
tionsal are such that the system reaches a complete ther
dynamic equilibrium under the evolution given by Eq.~6!,
i.e., a state for which detailed balance is realized, so
eachprocessa is equilibrated.

The second principle only states thatdF/dt2w is nega-
tive for nonreversible transformations. The fact thatdF/dt is
also negative agrees with the interpretation of2kBF as an
entropy intrinsic to the system~see Sec. V!. Inequality ~6!
indicates that the total entropy production always conta
other positive contributions in an open system out of eq
librium, but it cannot be deduced from the second princi
alone. We now give the derivation of this inequality.

IV. PROOF OF INEQUALITY „6…

A. Stochastic theory

We introduce the stochastic theory of the system
scribed in Sec. III, in order to define the functionF. The
state space is now specified by the numberni of particles of
speciesXi and the state of the system is a probability dist
bution functionP($ni%,t) satisfying the master equation

]P~$xi%,t !

]t
5(

d
@Wd~$ni2d i%!P~$ni2d i%,t !

2Wd~$ni%!P~$ni%,t !#, ~7!

whereWd($ni%) is the probability per unit time of a transi
tion $ni%→$ni1d i% and the summation in Eq.~7! is over all
possible transitionsd5$d i% occurring in the system, due t
the reactions processes~1!. The hypothesis thatP obeys a
master equation is made by most authors~see@1–6#! and can
be justified in many situations. We go to the large volum
asymptotics in the usual manner~see@2#!, writing

xi5
ni

V
, dxi5

1

V
, P~$ni%,t !5p~$ni%,t !)

i 51

s

dxi ,

Wd~$ni%!5Vwd~$xi%!

and we obtain

]p~x,t !

]t
5V(

d
FwdS H xi2

d i

V J D pS H xi2
d i

V J ,t D
2wd~$xi%!p~$xi%,t !G . ~8!

As it was noticed previously, because of Eq.~4!, the evo-
lution is confined to the invariant subspaceE„x(0)… defined
by the linear equations

xi5xi~0!1(
a

ta
i ja, ~9!

where theja denote the progress variable of the processa.
The system tends to a stationary statepS„xux(0)… confined
on the spaceE„x(0)…. In the large volume limit we can write
~see, e.g.,@4,8,12#!
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pS„xux~0!…5U exp@2VF„xux~0!…#, ~10!

whereU is a normalizing factor andF„xux(0)… is a certain
function onE„x(0)…. It is seen from Eq.~10! that2kBVF is
the analog of Einstein entropy usually defined for equil
rium distributions. It can be shown~e.g., @4,8,12#! that F
satisfies the Hamilton Jacobi equation

(
d

wd~x!FexpS (
i 51

1

d i

]F

]xi
D 21G50. ~11!

We have proved@12# that under certain hypotheses, the
exists a unique regular solution of the Hamilton Jacobi E
~11! up to an additive constant@which is the normalization
constant of the stationary statepS(xux(0)# and we have stud
ied there several remarkable properties ofF. It is clear that
all the previous quantities depend on the fixed values ofal ,
although this fact is not mentioned explicitly in our not
tions.

B. The main inequality

We write, using the macroscopic evolution equations~5!,

dF

dt
5(

i

]F

]xi

dxi

dt

5S (
i

]F

]xi

dxi

dt
1(

l

]F

]al
Fdal

dt G
R
D 2(

l

]F

]al
Fdal

dt G
R

,

~12!

where@dal /dt#R is the number of particlesAl ~per unit vol-
ume and time! that should be exchanged with the reservoir
order to maintainal constant, namely

Fdal

dt G
R

5(
a

ta
l ~va

12va
2!.

The last term of Eq.~12!, 2((]F/]al)@dal /dt#R , is exactly
the workw ~per unit volume and time! that should be done
by the reservoir in order to maintainal constant:

w52(
a,l

ml ta
l ~va

12va
2!. ~13!

On the other hand,

(
i

]F

]xi

dxi

dt
1(

l

]F

]al
Fdal

dt G
R

5kBTS~va
12va

2!ln10

va
2

va
1

<0. ~14!

For a given initial statex(0), we canexpressF(x) as a
function of the progress variablesja using Eq.~9!. Then, Eq.
~11! can be rewritten as

(
a

H va
1FexpS ]F

]ja
D21G1va

2FexpS 2]F

]ja
D21G J 50.

~15!

On the other hand, if we defineqa5 ln10(va
2/va

1), we have
-

.

va
1@exp~qa!21#1va

2@exp~2qa!21#50 ~all a!.
~16!

We subtract from Eq.~15! the sum overa of Eq. ~16! to
obtain

(
a

va
1FexpS ]F

]ja
D2exp~qa!G

1va
2FexpS 2

]F

]ja
D2exp~2qa!G50,

and use the inequality

ex2ey>ey~x2y!

with equality if and only ifx5y, to obtain

( ~va
1eqa2va

2e2qa!S ]F

]ja
2qaD>0,

which is rewritten as

(
a

~va
12va

2!qa<(
a

~va
12va

2!
]F

]ja
. ~17!

But the second member of the inequality~17! is precisely
dF/dt, so that we have

(
a

~va
12va

2!ln10

va
2

va
1 <

dF

dt
~18!

with equality if and only if]F/]ja5 ln10(va
2/va

1), namely,
if exp(2VF) satisfies detailed balance for eacha, so that it is
the equilibrium distribution function. Equations~12!–~14!
and inequality~18! give the proof of inequality~6!. The in-
equality dF/dt<0 is proved by applying the inequalit
expx21>x to Eq. ~15!.

V. INTERPRETATION AND CONCLUSION

We have obtained a general inequality that is valid for a
reaction-diffusion system at fixed temperature and volume
relates the rate of the nonequilibrium free energy of the s
tem to the rate of Einstein entropy production2kBdF/dt,
and to the rate of workw done by the reservoirs to maintai
this nonequilibrium distribution function during the spont
neous relaxation to the stationary state. The positive quan
2(dF/dt2w) is the rate of dissipation of energy~energy
lost by the system per unit time and unit volume!. On the
other hand,2dF/dt is the rate of dissipation of information
In fact, the function2F„xux(0)… is the relative entropy of
the distributiond(•2x) with respect to the stationary distr
bution pS ~see@10#!, namely,

2F„xux~0!…52(
x8

d~x82x!ln10

d~x82x!

pS„x8ux~0!…
.

ThusF is a measure of the information that one gets wh
one knows that the system is in the statex, with respect to
the knowledge of the stationary statepS„xux(0)…. Thus, in-
equality ~6! states that the rate of energetic dissipation



ui-
a

de

o-
ra
f

at

m

l

t

f.
of

m-

py
m,
he
her
the
. In
e

s-
ean

5354 PRE 58BERNARD GAVEAU, MICHEL MOREAU, AND JANOS TOTH
larger than the rate of information dissipation~times the
Boltzmann factorkBT) if the system approaches a noneq
librium stationary state, whereas both rates of dissipation
equal if the stationary state is an equilibrium state with
tailed balance.

We can reinterpret inequality~6! in a different man-
ner: it can be written as

d~F2kBTF!

dt
<w. ~19!

Under this form, it means that the rate of work~given by the
reservoirs to the system! during the spontaneous macr
scopic relaxation to the stationary state is larger than the
of variation ofF2kBTF and so it is larger than the rate o
variation ofF alone~becausedF/dt<0).

Inequality ~19! leads to experimental predictions th
could be verified. It is surprising that inequality~19! is an
equality if and only if the stationary state is an equilibriu
state. The mathematical reason is thatex2ey>ey(x2y)
with equality if and only ifx5y. But there is also a physica
reason for this equality. Namely, letx̄ be the value of the
variablesx at thermal equilibrium so that (x̄,a) is a state of
thermal equilibrium. In this case it is possible to prove~see
@12#! that

F~x!5F~x,a!2(
i

]F

]xi
~ x̄,a!xi

so that

d~F2kBTF!

dt
5(

i

]F

]xi
~ x̄,a!

dxi

dt

5(
i ,a

ta
i m i~ x̄,a!~va

12va
2!. ~20!
o-

-

re
-

te

But we know that if (x̄,a) is a true equilibrium state, the
total variations for all processesa are 0 at equilibrium so tha
]F/]ja50, or

(
i

ta
i m i~ x̄,a!1(

l
ta
l ml

a~ x̄,a!50.

From Eq.~20!, we deduce

d~F2kBTF!

dt
52(

l ,a
ta
l ml~ x̄,a!~va

12va
2!,

which is w @Eq. ~12!#.
Finally, we compare our result with the results of Re

@11#. In this work, the authors considered the variation
entropy of the distribution probability

S~ t !52(
x

P~x,t !ln10 P~x,t !,

whereP(x,t) satisfies the master equation, and they deco
poseddS(t)/dt in a positive irreversible partdiS/dt and an
exchange partdeS/dt ~which can have any sign!.

We consider instead the variation of the relative entro
~which would be the free energy for an equilibrium syste
see@10#!, which is always negative, and we compare it to t
dissipation of energy that is in principle measurable, rat
than the entropy. In the present work, we consider only
variation along the deterministic trajectories of the system
a work to appear@15#, we shall extend our result to th
stochastic variation and derive other inequalities.
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