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Dissipation of energy and of information in nonequilibrium reaction-diffusion systems
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In this paper, we prove a general inequality for the macroscopic relaxation towards a stationary nonequilib-
rium state. Namely, the rate of dissipation of energy in the system always exceeds the rate of dissipation of
information (up to temperatune Here the information function is defined as the logarithm of the stationary
probability distribution divided by the volume. The equality is achieved if and only if the stationary probability
distribution is an equilibrium distribution function. This implies a lower bound for the work needed to produce
a fluctuation away from the stationary state, which should have experimental consequences.
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I. INTRODUCTION Il. REACTION DIFFUSION SYSTEMS

We consider a system at a fixed temperatiirewith

Many natural systems are not in equilibrium although hemical species denoted by, i =1,...s, and other chemi-

they reach a stationary state. One of the main problems Ogal species denoted b, |=1,..r, which will be kept

out-of-equilibrium thermodynamics is to define nonequilib- o nstant by reservoirs later on. The volume of the system is
rium state functions and to find relations between them, ag supposed to be large, and we denotexbyand a, the

well as evolution laws, in particular far from equilibrium. respective concentrations of the specesand A, (number
This problem has been addressed by many autisess €.9.,  of particles divided by/). The internal evolution of the sys-

reaction-diffusion system, between the rate of dissipation o{ype

energy and the rate of dissipation of informati@m a sense
to be defined latey during the relaxation of the system from s t s r
a nonstationary state to(aonequilibrium stationary state. D v X > n A Y X+ > nh AL (D)

It is well known (see[1]) that for a system in an equilib- =1 =1 =1 =1
rium state, the work necessary to produce a fluctuation away
from this macroscopic equilibrium state is larger than the This type of process describes chemical reactions, as well
variation of the free energy of the system. Our main resul@s diffusion, if the total volum# is divided in cells and the
concerns the work per unit time given to the system, duringi O Ay denote a species in a given cell. The numberg,
the macroscopic spontaneous relaxation towards a stationafy ., are positive or zero integers.
state. More precisely, we consider a reaction-diffusion sys- We assume that the system can be described by a non-
tem, maintained at a fixed temperature by a heat bath. Cepquilibrium free energy(x,a) (per unit volume. For a sys-
tain species are also maintained at fixed concentrations b§gm that is in partial equilibriumi=(x,a) would be the sum
the action of external reservoirs, while other species evolv@f the equilibrium free energies of each species at their re-
spontaneously under the chemical and diffusion processeQSP_eCt'Ve concentration, but we do not restrict ourselves to
that take place inside the system. Starting from a macrot-hIS special form. The chemical potentials are
scopic state, one can also define the work given to the system
by the external reservoirs of fixed species during the sponta- :i m :f
neous relaxation towards the stationary stathich is, in M=ox T ga
general, nonequilibriugn We prove that, during the sponta-
neous evolution, the rate per unit time of this is always largerrhe rate constants . of the backwards and forward pro-
than the rate of variation df +kgT Inyg P, whereF is the  cessesy are given by
(nonequilibrium free energy an is the stationary distribu-
tion probability, with equality if and only if the system 1
evolves toward a thermal equilibrium state. w:=C, exp{— (E Vot S nLamM, )

We notice that this kind of inequality cannot be obtained keT \ 7~ ro
by the classical principles of thermodynamics alone, or even
of those of generalized thermodynamics. Moreover, an inwhere C, depends only orw [14]. This assures that each
equality concerning the variation of entropy was derived inprocess is equilibrated at thermal equilibrium. It is easily
[11], but this does not relate obviously to the variation ofseen that this formula applies to the usual kinetic laws when
free energy and the external work. the chemical potentials are given by their classical expres-
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sion for ideal mixtures and perfect gases. It has been shown Moreover, d®/dt and dF/dt—w are always negative,

that it also holds in more general conditiofis3]. If we de-
fine
i i I _ Al |
Ta= Vo Vigs ta_nfa_nJra'
the free evolution equatiorsvhen concentrations; anda,
are unconstraingchare

dx; — B d . ~
TS Aere), =S tel-en). @

[e3

If we denote byé*(t) the progress variable up to timef
the process, i.e., the number of forward evendsminus the
number of backward events up to timet (divided by V),
we have

x(H)=x(0)+> 7 &%), (49)

a|<t>=a|<0>+§ thex), (4b)

and for given(x(0),a(0)) the system evolves towards a
thermal equilibrium where each processs equilibrated be-

cause of the choice of the rates in Eg).

IIl. NONEQUILIBRIUM SITUATION: A
THERMODYNAMIC INEQUALITY

We now assume that external reservoirs control the co
centration of the specie8,, and, to simplify matters, we
assume that the external reservoirs maintain the concentr%
tion a; at fixed values. Under this condition, the state space
breaks up in invariant subspadeéx(0)) given by the linear

equations

xi=x(0)+>, 7 ¢

Because by Eq(4a), the evolution is confined to such a
space. If at time 0x;(0) is given, Eq(4a) gives the value of
the stochastic process(t) at any time. The macroscopic

evolution is given by

dx; . da
d_t|:2 (0l —w)), d—tl=0. (5)

We will show that it is possible to define a state function
—kg®, which is the analog of Einstein entropy per unit vol-
ume, usually defined for equilibrium distributiorisee Sec.
IV). This quantity is obtained from the stationary distribution

n_

and Eq.(6) is an equality if and only if the fixed concentra-
tionsa, are such that the system reaches a complete thermo-
dynamic equilibrium under the evolution given by H6),
i.e., a state for which detailed balance is realized, so that
eachprocessa is equilibrated.

The second principle only states thdfe/dt—w is nega-
tive for nonreversible transformations. The fact tddt/dt is
also negative agrees with the interpretation-dfg® as an
entropy intrinsic to the systertsee Sec. Y. Inequality (6)
indicates that the total entropy production always contains
other positive contributions in an open system out of equi-
librium, but it cannot be deduced from the second principle
alone. We now give the derivation of this inequality.

IV. PROOF OF INEQUALITY (6)
A. Stochastic theory

We introduce the stochastic theory of the system de-
scribed in Sec. lll, in order to define the functidn The
state space is now specified by the numiyeof particles of
speciesX; and the state of the system is a probability distri-
bution functionP({n;},t) satisfying the master equation

—”’({;i}’t) = W{ni—3hP(n= 1.0

_Wﬁ({ni})P({ni}!t)]! (7)

whereWy({n;}) is the probability per unit time of a transi-
tion {n;} —{n;+ &} and the summation in Eq7) is over all
ossible transitiong={4&;} occurring in the system, due to
e reactions processé$). The hypothesis tha® obeys a
Mmaster equation is made by most auth@ee[1-6]) and can

be justified in many situations. We go to the large volume
asymptotics in the usual manngee[2]), writing

) P({nl}it):p({nl}!t)];[l dXi )

<lw

Xi: dXi:

)
V ’

Wis({ni}) =Vw,({xi})

e -3

: ®

and we obtain

ap(xt)
— —VES [th

—w,({xi})p({xi}.t)

As it was noticed previously, because of E4), the evo-

of the stochastic theory. Before studying it in the next seclution is confined to the invariant subspagéx(0)) defined
tion, we now state our main result, which is an inequality,by the linear equations

holding out of equilibrium, betweedF/dt, d®/dt, andw,

the work done per unit time by the external reservoirs in

order to maintain the concentrations of the speéigat the
constant value, .
This thermodynamic inequality can be written as

dF 0o ]
R 2_ —_—
at W B! gt - ©)

x=x(0)+>, ¢, 9)

where theé” denote the progress variable of the process
The system tends to a stationary stptgx|x(0)) confined
on the spac&(x(0)). In the large volume limit we can write
(see, e.g.[4,8,12)
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Ps(x[x(0))=U exd — V@ (x|x(0))], (10

whereU is a normalizing factor ané (x|x(0)) is a certain
function onE(x(0)). It is seen from Eq(10) that —kgV® is
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w,[exp(d,) — 1]+ o, [exp(—d,)—1]=0 (all @).

(16)
We subtract from Eq(15) the sum ovewrr of Eq. (16) to

the analog of Einstein entropy usually defined for equilib-obtain

rium distributions. It can be showte.g.,[4,8,129) that ®
satisfies the Hamilton Jacobi equation

ex%;ll i ﬁ)—1}=0.

o 1y

> Wy(x)
S

We have proved12] that under certain hypotheses, there
exists a unique regular solution of the Hamilton Jacobi Eq

(11) up to an additive constamtvhich is the normalization
constant of the stationary statg(x|x(0)] and we have stud-
ied there several remarkable propertiestofit is clear that
all the previous quantities depend on the fixed values, of

although this fact is not mentioned explicitly in our nota-

tions.

B. The main inequality

We write, using the macroscopic evolution equati¢bis

2 w
a
a

F{a@
ex (9_6a
p( a@) 3
ex T3, —exp—q,)|=0,

and use the inequality

tow,

ef—e¥=eY(x—y)
with equality if and only ifx=Yy, to obtain

P

aéa_q“) =0.

» <w;e%—w;e-%>(

which is rewritten as

P

r—w,)q,< r—w,) —. 1
oF g oF 0% 2 (0700 =2 (0 —0,) 70 (1)
dt 4 oax; dt . . .
But the second member of the inequality7) is precisely
IF dx; IF [da JF [da d®/dt, so that we have
353 a3 5w, v a0
2 (0 —w>)In —_<— (18
(12 T e TadTH0 T dt

where[da, /dt]g is the number of particled, (per unit vol-  ith equality if and only ifo®/d&,=Ino(w, /w)), namely,
ume and tim}athgt should be exchanged with the reservoir injs exp(— V) satisfies detailed balance for eaghso that it is
order to maintaire, constant, namely the equilibrium distribution function. Equationd2)—(14)
and inequality(18) give the proof of inequality6). The in-
equality d®/dt<0 is proved by applying the inequality
expx—1=xto Eq. (15).

da|
dt |

=2 th(w!—wy).

The last term of Eq(12), — 2 (dF/da,)[dq /dt]g, is exactly
the workw (per unit volume and timethat should be done
by the reservoir in order to maintasy constant:

V. INTERPRETATION AND CONCLUSION

We have obtained a general inequality that is valid for any
reaction-diffusion system at fixed temperature and volume. It
relates the rate of the nonequilibrium free energy of the sys-
tem to the rate of Einstein entropy productierkgd®/dt,
and to the rate of workv done by the reservoirs to maintain
this nonequilibrium distribution function during the sponta-
neous relaxation to the stationary state. The positive quantity
—(dF/dt—w) is the rate of dissipation of enerdgnergy
lost by the system per unit time and unit volum®n the
other hand,—d®/dt is the rate of dissipation of information.

In fact, the function—®(x|x(0)) is the relative entropy of
the distributions(- —x) with respect to the stationary distri-
bution pg (see[10]), namely,

w=—2I mity(w) —w,). (13)

On the other hand,

2 dF dXi+E

¢ ook dt 4

dF

Ja, | dt

d w,
_al} =kg T (0, —w,)Inyp—+
R w

<0. (14
For a given initial statex(0), we canexpress®(x) as a
function of the progress variabl€s using Eq.(9). Then, Eq.

(121) can be rewritten as
. ot]end 5|1 orlon{ 5271 -0
(19

On the other hand, if we defirg,=In;(w, /), we have

S(x'—Xx)

~POX(0)= = 2 8 =)l S s

to, Thus ® is a measure of the information that one gets when

one knows that the system is in the statewith respect to
the knowledge of the stationary stagte(x|x(0)). Thus, in-
equality (6) states that the rate of energetic dissipation is
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larger than the rate of information dissipatigtimes the But we know that if §,a) is a true equilibrium state, the
Boltzmann factokgT) if the system approaches a nonequi- total variations for all processesare 0 at equilibrium so that
librium stationary state, whereas both rates of dissipation areF/d¢,=0, or
equal if the stationary state is an equilibrium state with de-
tailed balance. _

We can reinterpret inequality6) in a different man- > 7 uixa)+ >t mi(x,a)=0.
ner: it can be written as i !

From Eq.(20), we deduce
d(F—kgTd) _
—_— =W

at (19

d(F—kgTd _
(d—tB)z—IE t mxa) (o) —w,),

Under this form, it means that the rate of wddiven by the

reservoirs to the systemduring the spontaneous macro- \unich isw [Eq. (12)].

scopic relaxation to the stationary state is larger than the rate Finally, we compare our result with the results of Ref.
of variation of F —kgT® and so it is larger than the rate of [17] | this work, the authors considered the variation of

variation of F alone(becausel®/dt<0). o entropy of the distribution probability
Inequality (19) leads to experimental predictions that

could be verified. It is surprising that inequalif§9) is an
equality if and only if the stationary state is an equilibrium -

state. The mathematical reason is tlet e’=eY(x—y) St ; POxbing POL),
with equality if and only ifx=y. But there is also a physical
reason for this equality. Namely, lat be the value of the
variablesx at thermal equilibrium so thaix(a) is a state of

thermal equilibrium. In this case it is possible to prdgee

[12]) that

whereP(x,t) satisfies the master equation, and they decom-
posedd S(t)/dt in a positive irreversible pad;S/dt and an
exchange partl,S/dt (which can have any sign
We consider instead the variation of the relative entropy
(which would be the free energy for an equilibrium system,
JE seg[10]), which is always negative, and we compare it to the
<I>(x)=F(x,a)—2 — (x,a)X dissipation of energy that is in principle measurable, rather
T X than the entropy. In the present work, we consider only the
variation along the deterministic trajectories of the system. In
so that a work to appeaf15], we shall extend our result to the
stochastic variation and derive other inequalities.

d(F—kgT®) > IF _ dx
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